Comparison of Various Shell Theories for Vibrating Functionally Graded Cylindrical Shells
author
Abstract:
The classical shell theory, first-order shear deformation theory, and third-order shear deformation theory are employed to study the natural frequencies of functionally graded cylindrical shells. The governing equations of motion describing the vibration behavior of functionally graded cylindrical shells are derived by Hamilton’s principle. Resulting equations are solved using the Navier-type solution method for a functionally graded cylindrical shell with simply supported edges. The effects of transverse shear deformation, geometric size, and configurations of the constituent materials on the natural frequencies of the shell are investigated. Validity of present formulation was checked by comparing the numerical results with the Love’s shell theory.
similar resources
Comparison of Two Kinds of Functionally Graded Cylindrical Shells with Various Volume Fraction Laws for Vibration Analysis
In this paper, a study on the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. The effects of the FGM configuration are taken into account by studying the frequencies of two FG cylindrical shells. Type I FG cylindrical shell has nickel on its inner surface and stainless steel on its outer surface and Type II...
full textA review of functionally graded thick cylindrical and conical shells
Thick shells have attracted much attention in recent years as intelligent and functional graded materials because of their unique properties. In this review paper, some critical issues and problems in the development of thick shells made from Functionally graded piezoelectric material (FGPM) are discussed. This review has been conducted on various types of methods which are available for thick ...
full textFirst-Order Formulation for Functionally Graded Stiffened Cylindrical Shells Under Axial Compression
The buckling analysis of stiffened cylindrical shells by rings and stringers made of functionally graded materials subjected to axial compression loading is presented. It is assumed that the material properties vary as a power form of the thickness coordinate variable. The fundamental relations, the equilibrium and stability equations are derived using the first order shear deformation theory. ...
full textTorsional Stability of Cylindrical Shells with Functionally Graded Middle Layer on the Winkler Elastic Foundation
In this study, the torsional stability analysis is presented for thin cylindrical with the functionally graded (FG) middle layer resting on the Winker elastic foundation. The mechanical properties of functionally graded material (FGM) are assumed to be graded in the thickness direction according to a simple power law and exponential distributions in terms of volume fractions of the constituents...
full textCalculation of Natural Frequencies of Bi-Layered Rotating Functionally Graded Cylindrical Shells
In this paper, an exact analytical solution for free vibration of rotating bi-layered cylindrical shell composed of two independent functionally graded layers was presented. The thicknesses of the shell layers were assumed to be equal and constant. The material properties of the constituents of bi-layered FGM cylindrical shell were graded in the thickness direction of the layers of the shell ac...
full textNonlinear Vibration of Functionally Graded Cylindrical Shells under Radial Harmonic Load
In this paper, the nonlinear vibration of functionally graded (FGM) cylindrical shells subjected to radial harmonic excitation is investigated. The nonlinear formulation is based on a Donnell’s nonlinear shallow-shell theory, in which the geometric nonlinearity takes the form of von Karman strains. The Lagrange equations of motion were obtained by an energy approach. In order to reduce the syst...
full textMy Resources
Journal title
volume 1 issue 1
pages 73- 83
publication date 2009-04-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023